Inhomogeneous Two-Parameter Abstract Cauchy Problem
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
A Two-parameter Generalized Skew-Cauchy Distribution
In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC(&lambda1, &lambda2), that it has more flexible than the skew-Cauchy distribution (denoted by SC(&lambda)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC(&lambd...
متن کاملA singular abstract cauchy problem.
In this note a singular abstract Cauchy problem is considered. A solution is obtained for this problem in terms of a regular abstract Cauchy problem. As an application we obtain a new solution of the initial value problem for a class of singular partial differential equations.
متن کاملInhomogeneous Gevrey Ultradistributions and Cauchy Problem
AMS Mathematics Subject Classification (2000): 46F05, 35E15, 35S05.
متن کاملThe Cauchy problem for the inhomogeneous porous medium equation
We consider the initial value problem for the filtration equation in an inhomogeneous medium ρ(x)ut = ∆u, m > 1. The equation is posed in the whole space R, n ≥ 2, for 0 < t < ∞ ; ρ(x) is a positive and bounded function with a certain behaviour at infinity. We take initial data u(x, 0) = u0(x) ≥ 0, and prove that this problem is well-posed in the class of solutions with finite “energy”, that is...
متن کاملFactoring Weakly Compact Operators and the Inhomogeneous Cauchy Problem
By using the technique of factoring weakly compact operators through reflexive Banach spaces we prove that a class of ordinary differential equations with Lipschitz continuous perturbations has a strong solution when the problem is governed by a closed linear operator generating a strongly continuous semigroup of compact operators.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 31 شماره No. 2
صفحات 71- 81
تاریخ انتشار 2011-01-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023